Sinteza i karakterizacija boja na bazi piridinijum piridona

##plugins.themes.bootstrap3.article.main##

Aleksandra Mašulović Julijana Tadić Luka Matović Jelena Lađarević Nataša Valentić Dušan Mijin

Apstrakt

 Azo boje su sintetske boje koje obuhvataju više od šezdeset posto komercijalnih boja. U poslednjih nekoliko godina za proizvodnju azo boja kao intermedijeri se sve više koriste derivati piridona. Apsorpcioni maksimumi azo piridonskih boja nalaze se u vidljivom delu spektra u opsegu između žute i narandžaste što im omogućava primenu u industriji bojenja tekstila, proizvodnji LCD-a, laserskoj tehnologiji, elektro-optičkim uređajima kao i ink-džet štampačima. Arilazo piridonske boje mogu da postoje u dva tautomerna oblika, i to azo- i hidrazonski oblik. Budući da tautomerna forma može imati jak uticaj na optička svojstva molekula, potrebno je odrediti dominantnu strukturu u datim rastvaračima. U ovom radu prikazani su sinteza i karakterizacija azo boja na bazi piridinijum piridona i spektralna karakterizacija tautomernih formi. Piridinijum piridon i dve boje su sintetisani, a potom je proučavan solvatohromizam navedenih jedinjenja.


  Azo boje Tautomerija UVVis apsorpcioni spektri


 

##plugins.themes.bootstrap3.article.details##

Kako citirati
MAŠULOVIĆ, Aleksandra et al. Sinteza i karakterizacija boja na bazi piridinijum piridona. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 32, n. 1, p. 59-62, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/4880>. Datum pristupa: 24 aug. 2019
Sekcija
Procesne tehnologije

Reference

(1) Zollinger H., Color chemistry: synthesis, properties and application of organic dyes and pigments, Wiley-VCH, Weinheim, Germany, 2003.
(2) Hunger K., Industrial dyes chemistry, properties, applications, Wiley-VCH, Weinheim, Germany, 2003.
(3) Oberholzer M., Concentrated storage-stable aqueous dye solution without any solubilizer content, WO 2005116143, 2005.
(4) Seto N., Y. Kato, T. Fujimori, Colored curable compositions containing phthalocyanineand pyridone azo dyes and manufacture of color filters using them with excellent light and heat resistance, JP 2006071822, 2006.
(5) Matsui M., R. Aoki, D. Nishiwaki, Y. Kubota, K. Funabiki, J. Jin, T. Yoshida, S. Higashijimad, H. Miura, Importance of fluorescence lifetimes for efficient indoline dyes in dye-sensitized solar cells, RSC Adv, 5 (2015), pp. 57721–57724.
(6) Sowmiah S., J. M. S. S. Esperança, L. P. N. Rebelo, C. A. M. Afonso, Pyridinium salts: from synthesis to reactivity and applications, Organic Chemistry Frontiers, 5 (2018), pp. 453-493
(7) Ertan N., F. Eyduran, The synthesis of some hetarylazopyridone dyes and solventeffects on their absorption spectra, Dyes Pigments, 27 (1995), pp. 313–20.
(8) Mirković J., B. Božlić, V. Vitnik, Ž. Vitnik, J. Rogan, D. Poleti, G. Ušćumlić, D. Mijin, Structural, spectroscopic and computational study of 5-(substituted phenylazo)-3-cyano-1-ethyl-6-hydroxy-4-methyl-2-pyridones, Color Technology, 134 (2017), pp. 33–43.
(9) Jelena M., Structural and solvatochromic properties of 5-(arylayo)-3-cyano-6-hydroxy-4-methyl-1-substituted-2-pyrydones: Experimental and quantum-chemical investigations, Doctoral dissertation, Belgrade, Serbia, 2015.
(10) Schwarz, Patent 5,413,630, United states Patent, 1995.
(11) Peng Q., M. Li, K. Gao, L. Cheng, Hydrazone-Azo Tautomerism of Pyridone Azo Dyes. Part III-Effect of Dye Structure and Solvents on the Dissociation of Pyridone Azo Dyes, Dyes and Pigments, 18 (1992), pp. 271–286.
(12) Chudgar R. J., J. Oakes, Kirk-Othmer: Encyclopedia of Chemical Technology, 2003.