Upravljanje energijom u zgradama s baterijskom i termalnom pohranom putem Model Predictive Control

##plugins.themes.bootstrap3.article.main##

Domagoj Badanjak Milica Bogdanović

Apstrakt

Prema nekim izvorima, energetske potrebe građvina zauzimaju veliki udjel u zagađenju okoliša. Oko 39% CO2 emisija u EU dolazi iz proizvodnje topline i struje[2].Dade se iz rečenog zaključiti kako su zgrade veliki potrošači energije. Logično je baviti se istraživanjem mogućnosti optimizacije korištenja energije.Jedna od obećavajućih strategija jest Model Predictive Control. MPC je stoga glavna tema ovog članka, točnije upotreba MPC-a u upravljanju energijom u zgradama I usporedba s konvencionalnim strategijama koje su trenutno dominantne na tržištu.
          

##plugins.themes.bootstrap3.article.details##

Kako citirati
BADANJAK, Domagoj; BOGDANOVIĆ, Milica. Upravljanje energijom u zgradama s baterijskom i termalnom pohranom putem Model Predictive Control. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 32, n. 1, p. 157-166, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/4903>. Datum pristupa: 23 oct. 2019
Sekcija
Energija u procesnoj industriji

Reference

[1] C. A. Balaras, A. G. Gaglia, and E. Georgopoulou, “building stock , energy consumption , emissions and potential energy European residential buildings and empirical assessment of the Hellenic building stock , energy consumption , emissions and potential energy savings,” no. March 2007, 2018.
[2] *** “Biggest problems in world today, according to millennials - Business Insider Deutschland.” [Online]. Available: https://www.businessinsider.de/world-economic-forum-world-biggest-problems-concerning-millennials-2016-8?r=US&IR=T. [Accessed: 21-Jun-2018].
[3] *** O. US EPA, “Sources of Greenhouse Gas Emissions.”
[4] *** “2020 climate & energy package | Climate Action.” [Online]. Available: https://ec.europa.eu/clima/policies/strategies/2020_en. [Accessed: 15-Jun-2018].
[5] S. Prívara, F. Oldewurtel, and J. Široky, “Experimental analysis of model predictive control for an energy efficient building heating system,” vol. 88, pp. 3079–3087, 2011.
[6] I. Aldaouab, M. Daniels, and R. Ordóñez, “Model Predictive Control Energy Dispatch to Optimize Renewable Penetration for a Microgrid with Battery and Thermal Storage,” 2018.
[7] F. Oldewurtel, C. Sagerschnig, and Z. Eva, “Building modeling as a crucial part for building predictive control ଝ ˇ áˇ,” vol. 56, pp. 8–22, 2013.
[8] A. Mirakhorli and B. D. P. D, “Occupancy behavior based model predictive control for building indoor climate — A critical review,” Energy Build., vol. 129, pp. 499–513, 2016.
[9] G. Bianchini, M. Casini, D. Pepe, A. Vicino, and G. G. Zanvettor, “An Integrated MPC Approach for Demand-Response Heating and Energy Storage Operation in Smart Buildings,” no. Cdc, pp. 3865–3870, 2017.
[10] F. Oldewurtel et al., “Use of model predictive control and weather forecasts for energy efficient building climate control,” Energy Build., vol. 45, pp. 15–27, 2012.
[11] A. Starˇ and M. Vaˇ, “Predictive control for heating power variance and peak reduction in buildings.”