Perovskit-silicijske tandemske solarne ćelije

##plugins.themes.bootstrap3.article.main##

Lovro Marković

Apstrakt

 Perovskitsilicijski tandemi jedni su od obećavajućih tehnologija za povoljne i visokoefikasne solarne ćelije budućnosti. Ipak, materijali, arhitekture, proizvodne metode i procesi izgradnje komercijalnog proizvoda još uvijek predstavljaju problem za ovu tehnologiju. U ovom radu objašnjavaju se osnovni principi rada tandemskih solarnih ćelija općenito te analiza korištenja različitih perovskita i silicija kao mogućih aktivnih materijala. Napravljen je kronološki pregled razvoja perovskita, s naglaskom na kontinuiranom unaprjeđivanju dugoročne stabilnosti i karakterističnih napona (zabranjenog pojasa/izlaza). Također, prezentirano je nekoliko novih ideja za povećanje efikasnosti temeljenih na modeliranju drugih funkcionalnih slojeva ćelije, a ne samog perovskita. Za kraj, provedena je analiza mogućih modela za izgradnju solarnih panela te uz to povezanih tehničkih izazova.


 


 

##plugins.themes.bootstrap3.article.details##

Kako citirati
MARKOVIĆ, Lovro. Perovskit-silicijske tandemske solarne ćelije. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 32, n. 1, p. 167-176, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/4904>. Datum pristupa: 15 dec. 2019
Sekcija
Energija u procesnoj industriji

Reference

[1] Wenk, H.-R., and Bulakh, A., Minerals: their constitution and origin, Cambridge University Press, Cambridge, UK, 2004.
[2] BBC Research Editorial, A History of Perovskite Solar Cells, 2018. [Online]. Available: http://blog.bccresearch.com/a-history-of-perovskite-solar-cells
[3] Paetzold, U., Perovskites Photovoltaics, Lecture slides, Karlsruhe Institute of Technology, Germany, 2018.
[4] Albrecht, S., Rech, B., On top of commercial photovoltaics, Nat. Energy, 2 (2017), 1, pp. 16196.
[5] Sahli, F. et al, Fully textured monolithic perovskite/silicon tandem solar cells with 25.2% power conversion efficiency, Nat. Materials, 17 (2018), pp. 820826.
[6] Sherahilo, T., Oxford PV sets world record for perovskite solar cell, 2018. [Online]. Available: https://www.oxfordpv.com/news/oxford-pv-sets-world-record-perovskite-solar-cell
[7] Rhle, S., Tabulated values of the Shockley-Queisser limit for single junction solar cells, Solar Energy, 130 (2016), pp. 139-147.
[8] Richter, A., Hermle, M. and Glunz, S. W., Reassessment of the Limiting Efficiency for Crystalline Silicon Solar Cells, IEEE J. Photovoltaics, 3 (2013), 4, pp. 1184-1191.
[9] Fu, F. et al, Low-temperature-processed efficient semi-transparent planar perovskite solar cells for bifacial and tandem applications, Nature Communications, 6 (2015), 8932.
[10] Stranks, S. D. et al, Electron-Hole Diffusion Lengths Exceeding 1 Micrometer in an Organometal Trihalide Perovskite Absorber, Science, 342 (2013), pp. 341-343.
[11] Bush, K. A. et al, 23.6%-efficient monolithic perovskite/silicon tandem solar cells with improved stability, Nat. Energy, 2 (2017), 17009.
[12] Pickerel, K., The perfect marriage: silicon and perovskite solar cells, 2015. [Online]. Available: https://www.solarpowerworldonline.com/2015/04/the-perfect-marriage-silicon-and-perovskite-solar-cells/
[13] Etxebarria, I. et al, Solution-processable polymeric solar cells: A review on materials, strategies and cell architectures to overcome 10%, Organic Electronics, 19 (2015), pp. 34-60.
[14] Shockley, W. and Queisser, H. J., Detailed Balance Limit of Efficiency of p-n Junction Solar Cells, J. Appl. Phys., 32 (1961), 3, pp. 510-519.
[15] De Vos, A., Detailed balance limit of the efficiency of tandem solar cells, J. Phys. D: Appl. Phys., 13 (1980), 5.
[16] Jaysankar, M. et al, Perovskite-silicon tandem solar modules with optimised light harvesting, Energy Environ. Sci., 11 (2018), 6, pp. 1489-1498.
[17] Mailoa, J. P. et al, A 2-terminal perovskite/silicon multijunction solar cell enabled by a silicon tunnel junction, Appl. Phys. Lett., 106 (2015), 121105.
[18] Werner, J. et al, Efficient Monolithic Perovskite/Silicon Tandem Solar Cell with Cell Area >1 cm2, J. of Phys. Chem. Lett., 7 (2016), pp. 161166.
[19] Hoke, E. T. et al, Reversible photo-induced trap formation in mixedhalide hybrid perovskites for photovoltaics, Chem. Sci., 6 (2015), pp. 613617.
[20] McMeekin, D. P. et al, A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells, Science, 351 (2016), 6269.
[21] Duong, T. et al, Rubidium multication perovskite with optimized bandgap for perovskite-silicon tandem with over 26% efficiency, Adv. Energy Mater., 7 (2017), 1700228.
[22] Wu, Y. et al, Monolithic perovskite/silicon-homojunction tandem solar cell with over 22% efficiency, Energy Environ. Sci., 10 (2017), pp. 2472-2479.
[23] Jaysankar, M. et al, Four-Terminal Perovskite/Silicon Multijunction Solar Modules, Adv. Energy Mater, 7 (2017), 1602807.
[24] De Wolf, S. et al, Organometallic Halide Perovskites: Sharp Optical Absorption Edge and Its Relation to Photovoltaic Performance, J. of Phys. Chem. Lett., 5 (2014), pp. 10351039.
[25] Lper, P. et al, Organic-inorganic halide perovskite / crystalline silicon four-terminal tandem solar cells, Phys. Chem. Chemical Phys., 17 (2014).