Optimizacija sinteze i ispitivanje sorpcionih svojstava hibridnog adsorbenta na bazi silike za uklanjanje AS(V jona

##plugins.themes.bootstrap3.article.main##

Slavko Mijatov Jelena Rusmirović Tihomir Kovačević Zlate Veličković Aleksandra Perić Grujić Aleksandar Marinković

Apstrakt

U ovom radu prikazana je sinteza hibridnog adsorbenta korišćenjem visoko poroznih sferičnih čestica silike kao osnovnog materijala, koje su modifikovane (3-amino)trimetoksisilanom (APTES) i impregnirane gvožđe-(oksi)hidroksidom u formi getita. Visokoorozna struktura materijala nosača, sferičnih čestica prečnika 1-2 mm, iskorišćena je radi dobijanja što veće aktivne površine adsorbenta te povećanja adsorpcionog kapaciteta, što je potvrđeno primenom infracrvene spektroskopije sa Fu-rijeovim transformacijama (FT-IR) i skenirajuće elektronske mikroskopije sa energetsko-disperzi-vnom spektroskopijom (SEM-EDS). Primenom šaržne adsorpcije As(V) jona ispitana su adsorpciona svojstva materijala i mehanizam vezivanja As(V) jona, odnosno određen je adsorpcioni kapacitet novog materijala, termodinamički i kinetički parametri ovog procesa u različitim eksperimentalnim uslovima. Na kraju, uzimajući u obzir prezentovanu sintezu hibridnog adsorbenta i obećavajuće re-zultate testiranja njegove primene, primetni su pozitivni tehno-ekonomski parametri prilikom poređenja sa drugim komercijalnim adsorbentima i tehnikama uklanjanja arsena.

##plugins.themes.bootstrap3.article.details##

Kako citirati
MIJATOV, Slavko et al. Optimizacija sinteze i ispitivanje sorpcionih svojstava hibridnog adsorbenta na bazi silike za uklanjanje AS(V jona. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 32, n. 1, p. 203-212, july 2019. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/4956>. Datum pristupa: 23 oct. 2019
Sekcija
Inženjerstvo životne sredine i održivi razvoj

Reference

[1] Alothman Z. A., A review: Fundamental aspects of silicate mesoporous materials, Materials (Basel)., vol. 5 (2012), no. 12, pp. 2874–2902.
[2] Nandiyanto A. B. D., Kim S. G., Iskandar F., Okuyama K., Synthesis of spherical mesoporous silica nanoparticles with nanometer-size controllable pores and outer diameters, Microporous Mesoporous Mater., vol. 120 (2009), no. 3, pp. 447–453.
[3] Đokić V. R. et al., “Preparation of TiO2/carbon nanotubes photocatalysts: The influence of the method of oxidation of the carbon nanotubes on the photocatalytic activity of the nanocomposites,” Ceram. Int., vol. 38 (2012), no. 8, pp. 6123–6129.
[4] Kim J., Seidler P., Wan L. S., Fill C., Journal of Colloid and Interface Science Formation, structure and reactivity of amino-terminated organic films on silicon substrates, J. Colloid Interface Sci., vol. 329 (2009), no. 1, pp. 114–119.
[5] WHO, Guidelines for drinking water quality recommendations, Geneva, 1993.
[6] Faria M. C. S. et al., Arsenic removal from contaminated water by ultrafine δ-FeOOH adsorbents, Chem. Eng. J., vol. 237 (2014), pp. 47–54.
[7] Nicomel N. R., Leus K., Folens K., Van Der Voort P., Du Laing G., Technologies for arsenic removal from water: Current status and future perspectives, Int. J. Environ. Res. Public Health, vol. 13 (2015), no. 1, pp. 1–24.
[8] Gupta A., Yunus M., Sankararamakrishnan N., Zerovalent iron encapsulated chitosan nanospheres - A novel adsorbent for the removal of total inorganic Arsenic from aqueous systems, Chemosphere, vol. 86 (2012) no. 2, pp. 150–155.
[9] Jaiswal A., Banerjee S., Mani R., Chattopadhyaya M. C., Synthesis, characterization and application of goethite mineral as an adsorbent, J. Environ. Chem. Eng., vol. 1 (2013), no. 3, pp. 281–289.
[10] Basu H., Singhal R. K., Pimple M. V., Reddy A. V. R., Arsenic removal from groundwater by goethite impregnated calcium alginate beads, Water. Air. Soil Pollut., vol. 226 (2015), no. 2.
[11] Veličković Z. et al., Adsorption of arsenate on iron(III) oxide coated ethylenediamine functionalized multiwall carbon nanotubes, Chem. Eng. J., vol. 181–182 (2012), pp. 174–181.
[12] Chen L. et al., Designed fabrication of unique eccentric mesoporous silica nanocluster-based core-shell nanostructures for pH-responsive drug delivery, ACS Appl. Mater. Interfaces, vol. 5 (2013), no. 15, pp. 7282–7290.
[13] Hao S., Verlotta Aprea A., P., Pepe F., Caputo D., Zhu W., Optimal synthesis of amino-functionalized mesoporous silicas for the adsorption of heavy metal ions, Microporous Mesoporous Mater., vol. 236 (2016), pp. 250–259.
[14] Taleb K. A. et al., Efficient pollutants removal by amino-modified nanocellulose impregnated with iron oxide, J. Serbian Chem. Soc., vol. 81, no. 10, pp. 1199–1213, 2016.
212 • 32nd INTERNATIONAL CONGRESS ON PROCESS INDUSTRY
[15] Ho Y. S., Mckay G., Pseudo-second order model for sorption, Process Biochem., vol. 34 (1999) pp. 451–465.
[16] Weber J., Morris W., Kinetics of adsorption on carbon from solution, J. Sanit. Eng. Div., vol. 89 (1963), pp. 31–60.
[17] Ouyang X. K. et al., Partially hydrolyzed bamboo (Phyllostachys heterocycla) as a porous bioadsorbent for the removal of Pb(II) from aqueous mixtures, J. Agric. Food Chem., vol. 62 (2014), no. 25, pp. 6007–6015.
[18] Visa M., Tailoring fly ash activated with bentonite as adsorbent for complex wastewater treatment, Appl. Surf. Sci., vol. 263 (2012), pp. 753–762.
[19] Langmuir I., The adsorption of gases on plane surfaces of glass, mica and platinum, J. Am. Chem. Soc., vol. 40 (1918), pp. 1361–1368.
[20] Freundlich H. M. F., Over the adsorption in solution, J. Phys. Chem., vol. 57 (1906), pp. 384–470.