pH – osetljivi hidrogelovi na bazi poli(metakrilne kiseline), kazeina i lipozoma za ciljano otpuštanje slabo vodorastvornih aktivnih supstanci

##plugins.themes.bootstrap3.article.main##

Maja D. Marković Vesna V. Panić Sanja I. Šešlija Rada V. Pjanović

Apstrakt

Kod razvoja polimernih nosača za ciljano otpuštanje slabo vodorastvornih aktivnih supstanci (SVAS) postoje dva ograničenja. Prvo, inkapsulacija SVAS zavisi od strukture nosača. Drugo ograničenje je vezano za naglo oslobađanje leka. Uprkos činjenici da je naglo oslobađanje leka, tzv. burst efekat poželjno kod nekih sistema, negativni efekti naglog oslobađanja leka u većini slučajeva mogu biti farmakološki opasni i ekonomski neefikasni. U ovom radu je prikazana nova strategija za inkapsulaciju i ciljano otpuštanje SVAS – kofeina bez burst efekta. Hidrofilni nosač na bazi poli(metakrilne kiseline) je modifikovan amfifilnim supstancama – kazeinom i centrifugiranim lipozomima kako bi se postigla inkapsulacija kofeina. Kofein je inkapsuliran u lipozome koji su zatim inkorporirani u mrežu nosača tokom sinteze nosača. Analiziran je uticaj morfologije nosača i interakcija koje su se uspostavile između njegovih komponenti na kinetiku otpuštanja kofeina. Zatim je analiziran uticaj stepen neutralizacije metakrilne kiseline na bubrenje nosača i otpuštanje kofeina u dve sredine različitih pH vrednosti koje su simulirale pH sredinu u gastrointestinalnom traktu čoveka. Pokazano je da sintetisani nosači imaju veliki potencijal za inkapsulaciju i ciljano otpuštanje SVAS.

##plugins.themes.bootstrap3.article.details##

Kako citirati
MARKOVIĆ, Maja D. et al. pH – osetljivi hidrogelovi na bazi poli(metakrilne kiseline), kazeina i lipozoma za ciljano otpuštanje slabo vodorastvornih aktivnih supstanci. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 33, n. 1, p. 39-46, oct. 2020. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/6092>. Datum pristupa: 07 may 2021
Sekcija
Procesne tehnologije

Reference

[1] M.D. Markovic, P.M. Spasojevic, S.I. Seslija, I.G. Popovic, D.N. Veljovic, R.V. Pjanovic, V.V. Panic, Casein-poly(methacrylic acid) hybrid soft networks with easy tunable properties, European Polymer Journal 113 (2019) 276-288.
[2] M.D. Markovic, V.V. Panic, S.I. Seslija, A.D. Milivojevic, P.M. Spasojevic, N.M. Boskovic-Vragolovic, R.V. Pjanovic, Novel strategy for encapsulation and targeted delivery of poorly water-soluble active substances, Polymer Engineering & Science n/a(n/a).
[3] B.D. Balanč, A. Ota, V.B. Djordjević, M. Šentjurc, V.A. Nedović, B.M. Bugarski, N.P. Ulrih, Resveratrol-loaded liposomes: Interaction of resveratrol with phospholipids, European Journal of Lipid Science and Technology 117(10) (2015) 1615-1626.
[4] G.P. Asnani, J. Bahekar, C.R. Kokare, Development of novel pH–responsive dual crosslinked hydrogel beads based on Portulaca oleracea polysaccharide-alginate-borax for colon specific delivery of 5-fluorouracil, Journal of Drug Delivery Science and Technology 48 (2018) 200-208.
[5] M. Tavakol, S. Dehshiri, E. Vasheghani-Farahani, Electron beam irradiation crosslinked hydrogels based on tyramine conjugated gum tragacanth, Carbohydrate Polymers 152 (2016) 504-509.
[6] G.A. Mun, Z.S. Nurkeeva, V.V. Khutoryanskiy, B.B. Yermukhambetova, S.M. Koblanov, I.A. Arkhipova, Radiation synthesis of hydrogels based on copolymers of vinyl ethers of monoethanolamine and ethyleneglycol and their interaction with poly(acrylic acid), Radiation Physics and Chemistry 67(6) (2003) 745-749.
[7] A. Mohan, D.J. McClements, C.C. Udenigwe, Encapsulation of bioactive whey peptides in soy lecithin-derived nanoliposomes: Influence of peptide molecular weight, Food Chemistry 213 (2016) 143-148.
[8] N. Noor, A. Shah, A. Gani, A. Gani, F.A. Masoodi, Microencapsulation of caffeine loaded in polysaccharide based delivery systems, Food Hydrocolloids 82 (2018) 312-321.
[9] R. Verma, L. Kumar, Characterization of caffeine isolated from camellia sinensis leaves of sikkim himalayan region, 2010.
[10] H. El Hamdani, M. El Amane, C. Duhayon, Studies on the syntheses, structural Characterization, antimicrobial of the CO-CRYSTAL 1,10-phenanthrolin-1-IUM(1,10-phenH+)-caffeine(caf)-hexafluorophosphate, Journal of Molecular Structure 1155 (2018) 789-796.
[11] F. Bignotti, S. Agnelli, F. Baldi, L. Sartore, I. Peroni, Macroporous polyacrylamide hydrogels with tailored porosity and mechanical properties via microphase separation in the presence of hydroxyethylcellulose, Polymer Engineering & Science 57(7) (2017) 764-771.
[12] A. Billard, L. Pourchet, S. Malaise, P. Alcouffe, A. Montembault, C. Ladavière, Liposome-loaded chitosan physical hydrogel: Toward a promising delayed-release biosystem, Carbohydrate Polymers 115 (2015) 651-657.
[13] M. Grit, D.J.A. Crommelin, Chemical stability of liposomes: implications for their physical stability, Chemistry and Physics of Lipids 64(1) (1993) 3-18.
[14] N. Higashi, M. Niwa, Organized polyelectrolyte monolayers as a structural model of biopolymer, Colloids and Surfaces A: Physicochemical and Engineering Aspects 123-124 (1997) 433-442.
[15] K. Durai Murugan, P. Natarajan, Studies on the structural transitions and self-organization behavior of polyacrylic acids with complementary polymers in aqueous solution by laser flash photolysis method using the triplet state of covalently bound phenosafranine, European Polymer Journal 47(8) (2011) 1664-1675.
[16] Y. Muroga, T. Yoshida, S. Kawaguchi, Conformation of poly(methacrylic acid) in acidic aqueous solution studied by small angle X-ray scattering, Biophysical Chemistry 81(1) (1999) 45-57.