Sinteza i karakterizacija katjonskog skroba za primenu u tretmanu otpadnih voda

##plugins.themes.bootstrap3.article.main##

Nataša Karić Tijana Stanišić Maja Đolić Marija Vukčević Mirjana Ristić Aleksandra Perić-Grujić Aleksandar Marinković Katarina Trivuna

Apstrakt

Cilj rada bio je razvijanje jednostavnog i ekološki prihvatljivog načina pripreme katjonski modifikovanog skroba sa katjonskim reagensima, glicidiltrimetilamonijum hloridom (GTMAH) i betain hidrohloridom (BHH), bez upotrebe organskih rastvarača. Takođe, proučavani su i uslovi reakcije kao što su reakciona temperatura, koncentracija katjonskih reagenasa, prisustvo i koncentracija katalizatora i prirodnog plastifikatora u strukturi materijala. Strukturna karakterizacija katjonskih skrobova izvršena je upotrebom Furijeove infracrvene (FTIR) spektroskopije i skenirajuće elektronske mikroskopije (SEM). Svojstva materijala kao što su stepen katjonizacije, viskoznost, kapacitet bubrenja i rastvorljivost određena su prema standardnim metodama. Stepen katjonizacije pripremljenih katjonskih skrobova varirao je od 0,048-0,162 mmol g-1 za uzorke sa GTMAH i od 0,032-0,156 mmol g-1 za uzorke sa BHH. FTIR i SEM karakterizacija potvrdila je da je ugradnja katjonskog dela u strukturu skroba bila uspešna.

##plugins.themes.bootstrap3.article.details##

Kako citirati
KARIĆ, Nataša et al. Sinteza i karakterizacija katjonskog skroba za primenu u tretmanu otpadnih voda. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 34, n. 1, p. 49-54, july 2021. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/6566>. Datum pristupa: 27 july 2021 doi: https://doi.org/10.24094/ptk.021.34.1.49.
Sekcija
Procesi i postrojenja u pripremi i prečišćavanju vode u procesnoj industriji

Reference

Vanier, N. L., S. L. M. El Halal, A. R. G. Dias, E. D. R. Zavareze, Molecular structure, functionality and applications of oxidized starches: A review. Food Chemistry (2017), 221, pp. 1546–1559.
[2] Sun, F., J. Liu, X. Liu, Y. Wang, K. Li, J. Chang, G. Yang, G. He, Effect of the phytate and hydrogen peroxide chemical modifications on the physicochemical and functional properties of wheat starch. Food Research International (2017), pp. 1–13.
[3] Santos, T. P. R. D., C. M. L. Franco, M. M. Mischan, M. Leonel, Improvement in spray-drying technology for preparation of pregelatinized cassava starch. Food Science and Technology (2019), 2061, pp. 939–946.
[4] Karić, N., J. Rusmirović, M. Đolić, T. Kovačević, LJ. Pecić, Ž. Radovanović, A. Marinković, Preparation and properties of hydrogen peroxide oxidized starch for industrial use. Hem. Ind. (2020), 74, pp. 25–36.
[5] Haroon, M., L. Wang, H. Yu, N. M. Abbasi, Z. U. Abdin, M. Saleem, R. U. Khan, R. S. Ullah, Q. Chen, J. Wu, Chemical modification of starch and its application as an adsorbent material. RSC Advances (2016), pp. 1–55.
[6] Lv, X., W. Song, Y. Ti, L. Qu, Z. Zhao, H. Zheng, Gamma radiation-induced grafting of acrylamide and dimethyl diallyl ammonium chloride onto starch. Carbohydrate Polymers (2013), 92, pp. 388–393.
[7] Pal, S., D. Mal, R. P. Singh, Cationic starch: an effective flocculating agent. Carbohydrate Polymers (2005), 59, pp. 417–423.
[8] Liu, J., R. Yang, F. Yang, Effect of the Starch Source on the Performance of Cationic Starches having Similar Degree of Substitution for Papermaking using Deinked Pulp. BioResources (2015), 10, pp. 922–931.
[9] Liu, Q., J. Li, W. Xu, Application of Cationic Starch with High Degree of Substitution in Packaging Paper from High Yield Pulp. Scientific Research (2010), pp. 35–38.
[10] Nasir, N. M., E. Abdulmalek, N. Zainuddin, Preparation and Optimization of Water-Soluble Cationic Sago Starch with a High Degree of Substitution Using Response Surface Methodology. Polymers (2020), 12, pp. 1–13.
[11] Wang P. X., X. L. Wu, X. Dong-hua, X. Kun, T. Ying, D. Xi-bing, L. Wen-bo, Preparation and characterization of cationic corn starch with a high degree of substitution in dioxane – THF – water media. Carbohydrate Research (2009), 344, pp. 851–855.
[12] Wu, H, Z. Liu, H. Yang, A. Li, Evaluation of chain architectures and charge properties of various starch-based flocculants for flocculation of humic acid from water. Water Research (2016), 96, pp. 126–135.
[13] Granö, H., J. Yli-Kauhaluoma, T. Suortti, J. Käki, K. Nurmi, Preparation of starch betainate: a novel cationic starch derivative. Carbohydrate Polymers (2000), 41, pp. 277–283.
[14] Harmonized Standards, Methylcellulose, (2014),
(https://www.usp.org/sites/default/files/usp/document/harmonization/excipients/methylcellulose.pdf)
[15] Zhou, J., J. Tong, X. Su, L. Ren, Hydrophobic starch nanocrystals preparations through crosslinking modification using citric acid. International Journal of Biological Macromolecules (2016), 91, pp. 186–1193.
[16] Ayoub, A., F. Berzin, L. Tighzert, C. Bliard, Study of the Thermoplastic Wheat Starch Cationisation Reaction under Molten Condition. Starch/Stärke (2004), 56, pp. 513–519.
[17] Ma, W., M. Meng, S. Yan, S. Zhang, Salt-free Reactive Dyeing of Betaine-modified Cationic Cotton Fabrics with Enhanced Dye Fixation. Energy, Resources and Environmental Technology (2015), pp. 1–18.
[18] Junistia, L., A. K. Sugih, R. Manurung, F. Picchioni, L. P. B. M. Janssen, H. J. Heeres, Synthesis of higher fatty acid starch esters using vinyl laurate and stearate as reactants. Starch /Stärke (2008), 60, pp. 667–675.