Karakterizacija i upotreba novog egzopolisaharida izolovanog iz klebsiella oxytoca j7, u studijama biosorpcije uklanjanja Pb2+ i Ni2+ jona iz otpadnih voda

##plugins.themes.bootstrap3.article.main##

Verica Ljubić Jovana Perendija Slobodan Cvetković Jelena Rogan Aleksandra Đuki-Vuković Nebojša Banjac Mina Popović

Apstrakt

Egzopolisaharidi (EPS), kao biopolimeri veoma su zastupljeni u prirodi. To su biopolimeri velike molekularne težine, koji imaju primenu u razlicitim industrijama, i kao takvi privukli su pažnju istraživača širom sveta u poslednjih nekoliko godina. Obzirom, da su glavne prednosti biosorpcija niska cena, visoka efikasnost uklanjanja metala iz razblaženog rastvora, minimizacija hemijskog i/ili biološkog mulja, bez dodatnih hranljivih materija i regeneracija biosorbenta, egzopolisaharidi su našli primenu u ovim procesima. S toga, u ovoj studiji, proučavan je novi biopolimer, egzopolisaharid izolovan iz soja Klebsiella oxytoca J7, za uklanjanje nikla i olova iz otpadnih voda. Nakon karakterizacije pomoću SEM, FTIR, TGA analiza, dobijeni rezultati pokazali su da EPS izolovan iz soja K. oxytoca J7, je stabilan, i da poseduje dobru efikasnost uklanjanja nikla, 98,9%, dok je vrednost efikasnosti uklanjanja za olovo iznosila 89.2%. S toga, ovaj egzopolisaharid može naći svoju primenu u tretmanu voda kontaminiranih teškim metalima.

##plugins.themes.bootstrap3.article.details##

Kako citirati
LJUBIĆ, Verica et al. Karakterizacija i upotreba novog egzopolisaharida izolovanog iz klebsiella oxytoca j7, u studijama biosorpcije uklanjanja Pb2+ i Ni2+ jona iz otpadnih voda. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 35, n. 1, p. 147-154, nov. 2022. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/6762>. Datum pristupa: 26 feb. 2024 doi: https://doi.org/10.24094/ptk.022.147.
Sekcija
Inženjerstvo životne sredine i održivi razvoj

Reference

[1] Rana S, Upadhyay LSB. Microbial exopolysaccharides: Synthesis pathways, types and their commercial applications. Int J Biol Macromol 157,2020, 577–83.
[2] Casillo A, Lanzetta R, Parrilli M, Corsaro MM. Exopolysaccharides from marine and ma-rine extremophilic bacteria: Structures, properties, ecological roles and applications. Mar Drugs 2018;16,69.
[3] Schmid J, Sieber V, Rehm B. Bacterial exopolysaccharides: Biosynthesis pathways and engineering strategies. Front Microbiol 2015;6,496
[4] Siddharth T, Sridhar P, Vinila V, Tyagi RD. Environmental applications of microbial extracellular polymeric substance (EPS): A review. J Environ Manage 287,(2021), 112307.
[5] Balali-Mood M, Naseri K, Tahergorabi Z, Khazdair MR, Sadeghi M. Toxic Mechanisms of Five Heavy Metals: Mercury, Lead, Chromium, Cadmium, and Arsenic. Front Pharmacol 2021;12:1–19.
[6] Piccin JS, Cadaval TRSA, De Pinto LAA, Dotto GL. Adsorption isotherms in liquid phase: Experimental, modeling, and interpretations. Adsorption Processes for Water Treatment and Purification, Springer International Publishing AG 2017, Brazil, 2017
[7] Raj K, Sardar UR, Bhargavi E, Devi I, Bhunia B, Tiwari ON. Advances in exopolysaccha-rides based bioremediation of heavy metals in soil and water: A critical review. Carbohydr Polym 2018;199:353–64.
[8] Qi X, Li Z, Shen L, Qin T, Qian Y, Zhao S, et al. Highly efficient dye decontamination via microbial salecan polysaccharide-based gels. Carbohydr Polym 2019;219:1–11.
[9] Ladnorg S, Junior NL, Dall’Agnol P, Domingos DG, Magnus BS, Wichern M, et al. Algi-nate-like exopolysaccharide extracted from aerobic granular sludge as biosorbent for methylene blue: Thermodynamic, kinetic and isotherm studies. J Environ Chem Eng 2019;7:103081.
[10] Kinuthia GK, Ngure V, Beti D, Lugalia R, Wangila A, Kamau L. Levels of heavy metals in wastewater and soil samples from open drainage channels in Nairobi, Kenya: community health implication. Sci Rep 2020;10:1–13.
[11] *** World Health Organizationd Health. Nickel in Drinking-water. Environ Heal 2005.
[12] Popović M, Stojanović M, Veličković Z, Kovačević A, Miljković R, Mirković N, et al. Characterization of potential probiotic strain, L. reuteri B2, and its microencapsulation using alginate-based biopolymers. Int J Biol Macromol 2021;183:423–34.
[13] Jovcic B, Begovic J, Lozo J, Topisirovic L, Kojic M. Dynamics of sodium dodecyl sulfate utilization andantibiotic susceptibility of strain Pseudomonas sp. ATCC19151. Arch Biol Sci 2009;61:159–64.
[14] Bajpai VK, Majumder R, Rather IA, Kim K. Extraction, isolation and purification of exo-polysaccharide from lactic acid bacteria using ethanol precipitation method. Bangladesh J Pharmacol 2016;11:573–6.
[15] Yang J, Wei W, Pi S, Ma F, Li A, Wu D, et al. Competitive adsorption of heavy metals by extracellular polymeric substances extracted from Klebsiella sp. J1. Bioresour Technol 2015;196:533–9.
[16] Li H, Liu L, Cui J, Cui J, Wang F, Zhang F. High-efficiency adsorption and regeneration of methylene blue and aniline onto activated carbon from waste edible fungus residue and its possible mechanism. RSC Adv 2020;10:14262–73.
[17] Biswas J, Ganguly J, Paul AK. Partial characterization of an extracellular polysaccharide produced by the moderately halophilic bacterium halomonas xianhensis SUR308. Biofouling 2015;31:735–44.
[18] Wu J, Yan D, Liu Y, Luo X, Li Y, Cao C, et al. Purification, Structural Characteristics, and Biological Activities of Exopolysaccharide Isolated From Leuconostoc mesenteroides SN-8. Front Microbiol 2021;12.
[19] Gan D, Ma L, Jiang C, Xu R, Zeng X. Production, preliminary characterization and antitu-mor activity in vitro of polysaccharides from the mycelium of Pholiota dinghuensis Bi. Car-bohydr Polym 2011;84:997–1003.
[20] Hong T, Yin J-Y, Nie S-P, Xie M-Y. Applications of infrared spectroscopy in polysacchari-de structural analysis: Progress, challenge and perspective. Food Chem X 2021;12:100168.
[21] Xu Z, Chen G, Xue L, Zhang H, Wang J, Xiang H, et al. Isolation, structural characteriza-tions and bioactivities of exopolysaccharides produced by Bacillus licheniformis. Int J Biol Macromol 2019;141:298–306.
[22] Sun L, Wang L, Li J, Liu H. Characterization and antioxidant activities of degraded polysaccharides from two marine Chrysophyta. Food Chem 2014;160:1–7.
[23] Meng M, Cheng D, Han L, Chen Y, Wang C. Isolation, purification, structural analysis and immunostimulatory activity of water-soluble polysaccharides from Grifola Frondosa fruiting body. Carbohydr Polym 2017;157:1134–43.
[24] Shi Y, Xiong Q, Wang X, Li X, Yu C, Wu J, et al. Characterization of a novel purified polysaccharide from the flesh of Cipangopaludina chinensis. Carbohydr Polym 2016;136:875–83.
[25] Ahmed Z, Wang Y, Anjum N, Ahmad A, Khan ST. Characterization of exopolysaccharide produced by Lactobacillus kefiranofaciens ZW3 isolated from Tibet kefir - Part II. Food Hydrocoll 2013;30:343–50
[26] Miao M, Ma Y, Huang C, Jiang B, Cui SW, Zhang T. Physicochemical properties of a wa-ter soluble extracellular homopolysaccharide from Lactobacillus reuteri SK24.003. Car-bohydr Polym 2015;131:377–83.
[27] Qi X, Li Z, Shen L, Qin T, Qian Y, Zhao S, et al. Highly efficient dye decontamination via microbial salecan polysaccharide-based gels. Carbohydr Polym 2019;219:1–11.
[28] Yu X, Zhang G, Xie C, Yu Y, Cheng T, Zhou Q. Equilibrium, kinetic, and thermodynamic studies of hazardous dye neutral red biosorption by spent corncob substrate. BioResources 2011;6:936–49.