Mediteranska trska u fitostabilizaciji tehnosola Preliminarni rezultati istraživanja
##plugins.themes.bootstrap3.article.main##
Apstrakt
Mediteranska trska (Arundo donax L.) je brzorastuća, rizomatozna višegodišnja C3 trava. Smatra se vodećim usevom za proizvodnju biomase na marginalnim i degradiranim zemljištima pod različitim nepovoljnim uslovima gajenja kao što su zaslanjenost, suša, dugotrajno zadržavanje vode, visoke i niske temperature i povišene koncentracije potencijalno toksičnih elemenata (PTE). Flotaciona jalovina koja nastaje u procesu obrade ruda metala predstavlja tip tehnosola koji se odlikuje brojnim nepovoljnim fizičkim i hemijskim odlikama, koje ograničavaju i često potpuno onemogućavaju rast i razvoj biljaka. Jalovina predstavlja i potencijalnu opasnost za životnu sredinu, budući da je izuzetno podložna eolskoj i fluvijalnoj eroziji, zbog čega velika količina PTE može lako dospeti u životnu sredinu. Cilj ovog istraživanja je bio da se ispita mogućnost zasnivanja i održivosti useva mediteranske trske na odlagalištu flotacione jalovine rudnika Pb, Zn i Cu radi fitostabilizacije njegove površine. Ogled je postavljen 2019. godine. Nakon sadnje je izvršena fertilizacija sa dozom od 650 kg/ha NPK đubriva (15:15:15) i usev je gajen bez navodnjavanja. Nakon 3 godine od zasnivanja usev se održao, a u biljnom materijalu i u supstratu ispitane su koncentracije sledećih elemenata: N, K, Cd, Cu, Fe, Mn, Ni, Pb, Zn. Najveći sadržaj makrohraniva izmeren je u listovima. Biljke su najveći deo PTE zadržale unutar korena, osim Mn i Zn i na taj način delimično sprečile njihov transport u nadzemne delove, a time i potencijalno negativni uticaj na različite fiziološke procese. Rezultati pokazuju da je moguće zasnovati samoodrživ usev mediteranske trske na podlozi poput flotacione jalovine i predstavljaju osnov za buduća detaljnija istraživanja. Na osnovu ovih preliminarnih rezultata smatramo da A. donax, kao biljna vrsta zaslužuje pažnju u smislu daljih detaljnih istraživanja fitostabilizacije tehnosola nastalih radom u procesnoj industriji.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Uygur, V., M. A. Karaduman, M. Kececi, E. Sukusu, M. Mujdeci,: Competitive adsorption of heavy metals in different soils. Fresenius Environmental Bulletin, 26 (2017), 10, pp. 6205-6211.
[3] Glišić, R.M., Z.B. Simić, F.J. Grbović, V.R. Rajičić, S.R. Branković, Phytoaccumulation of metals in three plants species of the Asteraceae family sampled along a highway. Notulae Botanicae Horti Agrobotanici Cluj-Napoca, 49 (2021), 2, pp. 12180.
[4] Prasad, K.V.S.K., Saradhi, P.P., P. Sharmila, Concerted action of antioxidant enzymes and curtailed growth under zinc toxicity in Brassica juncea. Environmental and experimental Botany, 42 (1999), 1, pp. 1-10.
[5] Peixoto, P.H.P., J. Cambraia, R. Sant'Anna, P.R. Mosquim, M.A. Moreira, Aluminum effects on fatty acid composition and lipid peroxidation of a purified plasma membrane fraction of root apices of two sorghum cultivars. Journal of Plant Nutrition, 24(2001), 7, pp. 1061-1070.
[6] Gutiérrez Ginés, M., J. Pastor Piñeiro, A.J. Hernández, Effect of heavy metals from mine soils on Avena sativa L. and education strategies. Fresenius Environmental Bulletin, 19 (2010), 9b, pp. 2083-2086.
[7] Shevyakova, N.I., E.N. Il'ina, V.V. Kuznetsov, Polyamines increase plant potential for phytoremediation of soils polluted with heavy metals. Doklady Biological Sciences, 423 (2008), 5, pp. 457-460.
[8] Reeves, R.D, A. J. M. Baker, Metal-accumulating plants. Phytoremediation of toxic metals: using plants to clean up the environment, Wiley, New York, USA, 2000.
[9] Gaur, A., A. Adholeya, Prospects of arbuscular mycorrhizal fungi in phytoremediation of heavy metal contaminated soils. Current Science, 86 (2004), 8, pp. 528534. 9
[10] Andrejić, G., Ispitivanje fitoremedijacionog i adaptivnog potencijala Miscanthus × giganteus (Poaceae) gajenog na odlagalištu flotacione jalovine na planini Rudnik, doktroska disertacija, Biološki fakultet Univerziteta u Beogradu, Srbija, 2020.
[11] Karp, A., I. Shield, Bioenergy from plants and the sustainable yield challenge. New Phytologist, 179 (2008), 1, pp. 15-32.
[12] Barney, J. N., J. M. DiTomaso, Global climate niche estimates for bioenergy crops and invasive species of agronomic origin: potential problems and opportunities. PLoS One, 6 (2011), 3, e17222.
[13] Danelli, T., A. Sepulcri, G. Masetti, F. Colombo, S. Sangiorgio, E. Cassani, R. Pilu, Arundo donax L. biomass production in a polluted area: Effects of two harvest timings on heavy metals uptake, Applied Sciences, 11 (2021), 3, pp. 1147.
[14] Janković, S., Đ. Glamočlija, S. Prodanović, Energetski usevi, Institut za primenu nauke u poljoprivredi, Beograd, Srbija, 2017.
[15] Lewandowski, I., J.M. O Scurlock, E. Lindvall, M. Christou, The development and current status of perennial rhizomatous grasses as energy crops in the US and Europe, Biomass and Bioenergy, 25 (2003), 4, pp. 335–361.
[16] Hardion, L., R. Verlaque, A. Baumel, M. Juin, B. Vila, Revised systematics of Mediterranean Arundo (Poaceae) based on AFLP fingerprints and morphology. Taxon, 61 (2012), 6, pp. 1217–1226.
[17] Danin, A., Arundo (Poaceae) in the Mediterranean reconsidered. Willdenowia, 34 (2004), 2, pp. 361-369.
[18] Cristaldi, A., G.O. Conti, S.L. Cosentino, G. Mauromicale, C. Copat, A. Grasso, M. Ferrante, Phytoremediation potential of Arundo donax (Giant Reed) in contaminated soil by heavy metals. Environmental research, 185 (2020), 109427.
[19] Curt, M.D., P.V. Mauri, M. Sanz, J. Cano-Ruiz, J.P. Del Monte, P.L. Aguado, J. Sánchez, The ability of the Arundo donax crop to compete with weeds in central Spain over two growing cycles. Industrial Crops and Products, 108 (2017), pp. 86-94.
[20] Bell, G., Ecology and management of Arundo donax, and approaches to riparian habitat restoration in Southern California. Blackhuys Publishers, (1997), pp. 103–113.
[21] Bernal, M.P., D. Grippi, R. Clemente, Potential of the biomass of plants grown in trace element-contaminated soils under Mediterranean climatic conditions for bioenergy production. Agronomy, 11 (2021), 9, 1750.
[22] Zhang, D., Q. Jiang, D. Liang, S. Huang, J. Liao, The potential application of giant reed (Arundo donax) in ecological remediation. Frontiers in Environmental Science, 9 (2021), 652367.
[23] Cristaldi, A., G.O. Conti, E. H. Jho, P. Zuccarello, A. Grasso, C. Copat, M. Ferrante, Phytoremediation of contaminated soils by heavy metals and PAHs. A brief review. Environmental Technology & Innovation, 8 (2017), pp. 309-326.
[24] Fernando, A.L., B. Barbosa, J. Costa, E.G. Papazoglou, Giant reed (Arundo donax), A multipurpose crop bridging phytoremediation with sustainable bioeconomy. Bioremediation and bioeconomy. (2016), pp. 77-95
[25] Tjurin, I. V., Agrochemical methods of soil analysis, Moskva: Nauka, 1965.
[26] Pansu, M., J. Gautheyrou, pH measurement. Handbook of Soil Analysis: Mineralogical, Organic and Inorganic Methods, Springer Science & Busness Media, Berlin, Germany, 2006.
[27] Džamić, R., D. Stevanović, M. Jakovljević, Praktikum iz agrohemije. Poljoprivredni fakultet Beograd Univerziteta u Beogradu, Srbija, 1996.
[28] Lam, KS., Biodegradation of xanthate by microbes isolated from a tailings lagoon and a potential role for biofilm and plant/microbe associations, Ph.D. Thesis, Western Sydney University, Penrith, Australia, 1999.
[29] Ozturk, Y., O. Bicak, Z. Ekmekci, Effects of residual xanthate on flotation efficiency of a Cu-Zn sulfide ore. Minerals, 12(2022), 3, pp. 279.
[30] Marschner H., Mineral nutrition of higher plants 2nd edition, Academic Press, London, England, 1995.
[31] Ranđelović, D., Geobotanička i biogeohemijska karakterizacija rudničke otkrivke u Boru i mogućnost primene rezultata u remedijaciji, doktorska disertacija, Rudarsko-geološki fakultet Univerzitet u Beogradu, Srbija, 2015.
[32] Kabata-Pendias, A., Trace elements in soils and plants 4th edition, CRC Press, Boca Raton, USA, 2011.
[33] Marschner, H., Marschner's mineral nutrition of higher plants 3rd edition, Academic Press, London, England, 2012.
[34] Beale, C.V., S.P. Long, Seasonal dynamics of nutrient accumulation and partitioning in the perennial C4-grasses Miscanthus× giganteus and Spartina cynosuroides. Biomass and Bioenergy, 12 (1997), 6, pp. 419-428.
[35] Teuchies, J., S. Jacobs, L. Oosterlee, L. Bervoets, P. Meire, Role of plants in metal cycling in a tidal wetland: Implications for phytoremidiation. Science of the Total Environment, 445 (2013), pp. 146−154.
[36] Van Goor, B., J. D. Wiersma, Chemical forms of manganese and zinc in phloem exudates, Physiologia Plantarum, 36 (1976), 2, pp. 213-216.
[37] Haydon, M.J., C.S. Cobbett, Transporters of ligands for essential metal ions in plants. New Phytologist, 174 (2007), 3, pp. 499-506.
[38] Milner, M.J., J. Seamon, E. Craft, L.V. Kochian, Transport properties of members of the ZIP family in plants and their role in Zn and Mn homeostasis. Journal of experimental botany, 64 (2013), 1, pp. 369-381.
[39] Godo, G. H., H. M. Reisenauer, Plant effects on soil manganese availability. Soil Science Society of America Journal, 44 (1980), 5, pp. 993-995.
[40] Bogdanović, D., M. Ubavić, V. Hadžić, Teški metali u životnoj sredini, Naučni institute za ratarstvo i povrtarstvo, Novi Sad, Srbija, 1997.
[41] Kabata-Pendias, A., W. Sadurski, Trace elements and compounds in soil. Wiley-VCH, Weinheim, Germany, 2004.
[42] Cano-Ruiz, J., M. R. Galea, M. C. Amorós, J. Alonso, P. V. Mauri, M. C. Lobo, Assessing Arundo donax L. in vitro-tolerance for phytoremediation purposes, Chemosphere, 252 (2020), 126576.
[43] Kabata–Pendias, A., K. Wiacek, Excessive uptake of heavy metals by plants from contaminated. Soil Science Society of America Journal, 36 (1985), pp. 4-33.