Održivi tretman komunalnih otpadnih voda i mulja Simulacija tehnoloških procesa

##plugins.themes.bootstrap3.article.main##

Jovana Đokić http://orcid.org/0000-0001-6949-668X Zoran Anđić http://orcid.org/0000-0003-2015-0607 Dragana Radovanović http://orcid.org/0000-0002-2935-7711 Marija Štulović http://orcid.org/0000-0002-7647-999X Nataša Gajić http://orcid.org/0000-0001-7546-9186 Željko Kamberović http://orcid.org/0000-0003-0507-5346

Apstrakt

Komunalni otpadni mulj (MWS) je nezaobilazni nusproizvod u postrojenjima za prečišćavanje komunalnih otpadnih voda (MWTPs) i predstavlja ekološke i regulatorne izazove zbog visokog sadržaja biorazgradivih materija. U ovom radu urađena je simulacija biotretmana komunalnih otpadnih voda (MWB) primenom aktivnog mulja, praćena procesom stabilizacije i solidifikacije (S/S) komunalnog otpadnog mulja primenom CaO kao aditiva. Tretman ima za cilj proizvodnju neopasnog solidifikata u skladu sa propisima. Simulacija je urađena kombinacijom softverskih programa HSC Chemistry and SuperPro Designer, integrišući rezultate karakterizacije realnog uzorka komunalnih otpadnih voda i MWS, MWB ulazne i izlazne parametre i termodinamičke parametre reakcija procesa. Rezultati pokazuju da je za tretman MWS neophodno 38% CaO, čime se dobija solidifikat sa 14,5% vode, i koji čini 69,9% mase tretiranog mulja. Dobijeni proizvod pokazuje povoljna svojstva, sa visokim sadržajem Ca(OH)2 (27,3%), CaCO3 (36,8%) i neorganskih oksida (2,9%), što ga čini pogodnim za bezbedno odlaganje ili upotrebu - proizvodnja građevinskih materijala, betona, kao aditiv za asfalt, ili punjenje puteva i deponija. Tehno-ekonomska procena, skalirana za kapacitete MWTP od 2000 - 10000 t/god, pokazuje održivost najvećeg razmatranog kapaciteta, za period od 12 godina. Procena uticaja na životnu sredinu potvrđuje održivost S/S procesa, minimizirajući emisije uz efikasno iskorišćenje resursa. Ova studija naglašava izvodljivost implementacije naprednog sistema upravljanja otpadom, osiguravajući usklađenost sa propisima uz ekonomsku dobit.

##plugins.themes.bootstrap3.article.details##

Kako citirati
ĐOKIĆ, Jovana et al. Održivi tretman komunalnih otpadnih voda i mulja. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 37, n. 1, p. 199-213, june 2024. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/8063>. Datum pristupa: 17 july 2024
Sekcija
Inženjerstvo životne sredine i održivi razvoj

Reference

[1] Akyol, Ç., A. Foglia, E. G. Ozbayram, N. Frison, E. Katsou, A.L. Eusebi, F. Fatone, Validated innovative approaches for energy-efficient resource recovery and re-use from municipal wastewater: From anaerobic treatment systems to a biorefinery concept, Critical Reviews in Environmental Science and Technology, 50(2020), 9, pp. 869–902. https://doi.org/10.1080/10643389.2019.1634456
[2] Von Sperling, M., Wastewater characteristics, treatment and disposal, IWA publishig, London, UK, 2007. https://doi.org/10.2166/9781780402086
[3] Karolinczak, B., J. Walczak, M. Bogacka, M. Zubrowska-Sudol, Life Cycle Assessment of sewage sludge mono-digestion and co-digestion with the organic fraction of municipal solid waste at a wastewater treatment plant, Science of the total environment, 907(2024), pp. 16780, https://doi.org/10.1016/j.scitotenv.2023.167801
[4] Valderrama, C., R. Granados, J.L. Cortina, Stabilisation of dewatered domestic sewage sludge by lime addition as raw material for the cement industry: Understanding process and reactor performance, Chemical Engineering Journal, 232(2013), pp. 458–467, http://dx.doi.org/10.1016/j.cej.2013.07.104
[5] Radovanović, D., M. Ranitović, Ž. Kamberović, M. Korać, M. Gavrilovski, Treatment of wastewater from new copper smelter RTB Bor, Process Engineering, 29(2017), 1, pp. 20-26, https://doi.org/10.24094/ptc.017.29.1.20
[6] Štulović, M., D. Radovanović, Ž. Kamberović, M. Korać, Z. Anđić, M. Ranitović, Leaching of toxic elements from secondary alkaline lead slag and stabilized/solidified products. Journal of Material Cycles and Waste Management, 21(2019), pp. 1402–1413, https://doi.org/10.1007/s10163-019-00892-8
[7] *** European Parliament, Council Directive 91/271/EEC, http://data.europa.eu/eli/dir/1991/271/2014-01-01
[8] *** European Parliament, Council Directive 2008/98/EC, http://data.europa.eu/eli/dir/2008/98/2024-02-18
[9] Demirbas, A., G. Edris, W.M. Alalayah, Sludge production from municipal wastewater treatment in sewage treatment plant, Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 39(2017), 10, pp. 999–1006, https://doi.org/10.1080/15567036.2017.1283551
[10] Meng, X., Z. Huang, G. Ge, Upgrade and reconstruction of biological processes in municipal wastewater treatment plants, Desalination and Water Treatment, 317(2024), pp. 100299, https://doi.org/10.1016/j.dwt.2024.100299
[11] Scholz, M., Chapter 15 - Activated Sludge Processes. Wetlands for Water Pollution Control, Elsevier, 2016, pp. 91-105, https://doi.org/10.1016/B978-0-444-63607-2.00015-0
[12] Hang, Z., P. Tong, P. Zhao, Z. He, L. Shao, Y. Jia, X.C. Wang, Z. Li, Hierarchical stringent response behaviors of activated sludge system to stressed conditions, Science of The Total Environment, 870(2023), pp. 161832, https://doi.org/10.1016/j.scitotenv.2023.161832
[13] Gao, X., Q. Zhang, S. Zhang, J. Li, C. Gu, G. Chen, Y. Peng, Novel three-sludge municipal wastewater treatment process coupling denitrifying phosphorus removal with anaerobic ammonium oxidation, Bioresource Technology, 399(2024), pp. 130562, https://doi.org/10.1016/j.biortech.2024.130562
[14] Fang, Y., H. Xie, B. Chen, Z. Han, D. An, W. Cai, W. Zhang, Y. Wang, Achieving carbon neutrality in Shanghai's municipal wastewater treatment sector requires coordinated water conservation and technical improvement, Journal of Cleaner Production, 443(2024), pp. 141134, https://doi.org/10.1016/j.jclepro.2024.141134
[15] Cieślik, B.M., J. Namieśnik, P. Konieczka, Review of sewage sludge management: standards, regulations and analytical methods, Journal of Cleaner Production, 90(2015), pp. 1-15, https://doi.org/10.1016/j.jclepro.2014.11.031
[16] North, J.M., J.G. Becker, E.A. Seagren, A.M. Asce, M. Ramirez, Methods for quantifying lime incorporation into dewatered sludge. II: field-scale application, Journal of Environmental Engineering, 134(2008), 9, pp. 762–770, https://doi.org/10.1061/(ASCE)0733-9372(2008)134:9(762)
[17] Marcinkowski ,T.A., Effect of alkalization process on changes in the chemical composition of secondary sludge, Environment Protection Engineering, 36(2010), 2, pp. 153–160.
[18] Srivastava, A.N., S. Chakma, Lime sludge assisted anaerobic bioreactor landfilling of municipal solid waste for enhanced leachate stabilization and bioenergy yield, Process Safety and Environmental Protection, 178(2023), pp. 278-286. https://doi.org/10.1016/j.psep.2023.08.039
[19] Roine, A., (2016) HSC Chemistry® v 9.0 [Software]. Outotec Research Oy Center, Pori
[20] Rulebook on categories, testing and classification of waste, 67/2011, 48/2012, and 1/2016. Official Gazette of the Republic of Serbia, Belgrade, Serbia, 2017.
[21] Rodríguez, N.H., R.J. Granados, M.T. Blanco-Varela, J.L. Cortina, S. Martínez-Ramírez, M. Marsal, M. Guillem, J. Puig, C. Fos, E. Larrotcha, J. Flores, Evaluation of a lime-mediated sewage sludge stabilisation process. Product characterisation and technological validation for its use in the cement industry, Waste Management, 32(2012), 3, pp. 550-560, https://doi.org/10.1016/j.wasman.2011.10.021