Korelacija strukture i potencijalne farmakološke aktivnosti spirohidantoina dobijenih iz α-tetralona

##plugins.themes.bootstrap3.article.main##

Anita Lazić http://orcid.org/0000-0003-4855-3782 Ivana Đorđević http://orcid.org/0000-0001-5981-9385 Kristina Gak Simić http://orcid.org/0000-0003-3928-9967 Luka Matović http://orcid.org/0000-0003-4945-7776 Aleksandra Mašulović http://orcid.org/0000-0002-5279-7694 Jelena Lađarević http://orcid.org/0000-0002-5554-7295 Nemanja Trišović http://orcid.org/0000-0002-9231-4810

Apstrakt

Hidantoin je nearomatičan petočlani ciklični ureid koji predstavlja važan strukturni fragment velikog broja farmakološki aktivnih jedinjenja. Derivati ovog petočlanog cikličnog ureida primenjuju se kao antikonvulzivi (fenitoin), antibiotici (nitrofurantoin), antikancerogeni lekovi (enzalutamid) i keratolitici (alantoin). U cilju dizajniranja novih potencijalno farmakološki aktivnih jedinjenja, u ovom radu, sintetisano je šest derivata spirohidantoina koji su u potpunosti strukturno okarakterisani određivanjem temperature topljenja, elementarnom analizom, FT-IR, 1H i 13C NMR spektroskopskim metodama. Efekat supstituenata na pomeranje maksimuma apsorpcije analiziran je primenom linearne korelacije energije solvatacije, dok je uticaj hemijske strukture na farmakološka svojstva derivata spirohidantoina procenjen primenom “pravila broja pet”, Veberovog, Eganovog i Gozovog kriterijuma, kao i primenom različitih in silico metoda. U cilju opsežnije analize potencijalne farmakološke aktivnosti sintetisanih spirohidantoina, korelisana su njihova potencijalna farmakološka svojstva sa odgovarajućim efektima rastvarača.

##plugins.themes.bootstrap3.article.details##

Kako citirati
LAZIĆ, Anita et al. Korelacija strukture i potencijalne farmakološke aktivnosti spirohidantoina dobijenih iz α-tetralona. Zbornik Međunarodnog kongresa o procesnoj industriji – Procesing, [S.l.], v. 37, n. 1, p. 279-288, june 2024. Dostupno na: <https://izdanja.smeits.rs/index.php/ptk/article/view/8082>. Datum pristupa: 06 oct. 2024 doi: https://doi.org/10.24094/ptk.024.279.
Sekcija
Procesne tehnologije

Reference

[1] Sousa Luis J. A., Barbosa Filho J. M., Bruno Freitas L., Almeida Medeiros I., Lima de Morais Soares L. C., Fernandes dos Santos A., Soares de Oliveira C., Filgueiras de Athayde-Filho P., Synthesis of new imidazolidin-2,4-dione and 2-thioxoimidazolidin-4-ones via C-phenylglycine derivatives, Molecules 15 (2010) 128–137.
[2] Meusel M., Gütschow M., Recent developments in hydantoin chemistry. A review, Organic Preparations and Procedures International: The New Journal for Organic Synthesis 36 (2004) pp. 391–443.
[3] Kumar V., Designed synthesis of diversely substituted hydantoins and hydantoin-based hybrid molecules: a personal account: Synlett 32 (2021) pp. 1897–1910.
[4] Jaromin A., Czopek A., Parapini S., Basilico N., Misiak E., Gubernator J., Zagórska A., Syn-thesis and antiplasmodial activity of novel bioinspired imidazolidinedione derivatives, Bio-molecules 11 (2021)1–12.
[5] Verma S., Rani S., Synthesis, molecular docking and CNS activity of 5,5-diphenylimidazolidine- 2,4-dione derivatives, Indian Journal of Chemistry 62 (2023) 1151–1161.
[6] Wang S., Ji L., Zhang D., Guo H., Wang Y., Li W., Synthesis and anti-inflammatory activity of 1-methylhydantoin cinnamoyl imides, Molecules 27 (2022) 8481–8493.
[7] Lazić A., Mašulović A., Lađarević J., Valentić N., Assessing the pharmacological potential of selected xanthene derivatives, Journal of Serbian Chemical Society 88 (2023) 811–824.
[8] Naydenova E., Pencheva N., Popova J., Stoyanov N., Lazarova M., Aleksiev B., Aminoderiva-tives of cycloalkanespirohydantoins: synthesis and biological activity, Farmaco 57 (2002) 189–194.
[9] Suzuki H., Kneller M. B. B., Rock D. A., Jones J. P., Trager W. F., Rettie A. E., Active-site characteristics of CYP2C19 and CYP2C9 probed with hydantoin and barbiturate inhibitors, Archives of Biochemistry and Biophysics 429 (2004) 1–15.
[10] *** http://www.swissadme.ch/. Accessed 10.02.2024.
[11] *** https://preadmet.bmdrc.kr/. Accessed 10.02.2024.
[12] Yin L., Zheng L., Xu L., Dong D., Han X., Zaho Y., Xu Y., Peng J., In silico prediction of drug targets, biological activities, signal pathways and regulating networks of dioscin based on bioinformatics, BMC Complementarary and Alternative Medicine 15 (2015) 41–53.
[13] Abdulrahman L. K., Al-Mously M. M., Al-Mosuli M. L., Al-Azzawii K. K., The biological activity of 5,5’-imidazolidine-2,4-dione derivatives, International Journal of Pharmacy and Pharmaceutical Sciences 5 (2013) 494–504.
[14] Gimenez B. G., Santos M. S., Ferrarini M., Fernandes J. P. S., Evaluation of blockbuster drugs under the Rule of five, Pharmazie 65 (2010) 148–152.
[15] Veber D. F., Johnson S. R., Cheng H.-Y., Smith B. R., Ward K. W., Kopple K. D., Molecular properties that influence the oral bioavailability of drug candidates, Journal of Medicinal Chemistry 45 (2002) 2615–2623.
[16] Lazić A., Mandić Ž., Ušćumlić G., Trišović N., Dizajn, sinteza i evaluacija farmakokinetički relevantnih svojstava novih spirohidantoina izvedenih iz β-tetralona, Hemijska Industrija 73 (2019) 79–92.
[17] Hmuda S. F., Banjac N. R., Trišović N. P., Božić B. Đ., Valentić N. V, Gordana U. S., Solvent effects on the absorption spectra of potentially pharmacologically active 5-alkyl-5-arylhydantoins-a structure-property relationship study, Journal of the Serbian Chemical Society 78 (2013) 628–635.