Isplativa proizvodnja legure CuCrZr primenom metalurgije praha
##plugins.themes.bootstrap3.article.main##
Apstrakt
Legura CuCrZr predstavlja aktuelan materijal sa potencijalnom primenom kao konstrukcioni materijal u budućim fuzionim reaktorima. Cilj ovog istraživanja je da se proizvede poboljšana CuCrZr legura primenom metalurgije praha (PM). Korišćene su PM tehnike mehaničko legiranje, hladno presovanje i sinterovanje. Komercijalno proizvedeni predlegirani CuCrZr prahovi su mehanički legirani 5 sati u inertnoj atmosferi argona korišćenjem visokoenergetskog mlina (Turbula mikser) sa kuglama različitih veličina. Mehaničkim legiranjem (ML) postignuto je povećanje gustine dislokacija matrice bakra, što dovodi do povećanja tvrdoće nakon densifikacije. Strukturni parametri (veličina kristalita, naprezanje i parametri rešetke) ML prahova i kompakta su ispitivani pomoću rendgenske difrakcije. Dobijeni rezultati pokazuju smanjenje veličine kristalita i parametra rešetke Cu matrice nakon ML. Dalje, XRD analiza je potvrdila prisustvo CuZr ojačavajućih čestica nakon sinterovanja. Mikrostrukturna analiza i distribucija ojačavajućih čestica Cu matrice izvršena je primenom SEM i XRD. Merenja tvrdoće su pokazala da in situ formiranje CuZr unutar Cu matrice povećava vrednosti tvrdoće za 45% u poređenju sa vrednostima tvrdoće čistog bakra.
##plugins.themes.bootstrap3.article.details##
Reference
[2] Qin Y.Q., Zhuang Y., Wang Y., Zhang Y.–F., Luo L.–M., Zan X., Wu Y.–C., Enhanced mechanical and electrical properties of CuCrZr-WC alloy prepared by mechanical alloying and spark plasma sintering, Fusion Engineering and Design, 180 (2022) 113166
[3] Lipa, M., Durocher, A., Tivey, R., Huber, T., Schedler, B., Weigert, J., The use of copper alloy CuCrZr as a structural material for actively cooled plasma facing and in vessel compo-nents, Fusion Engineering and Design, 75-79 (2005) 469–473.
[4] You, J.-H. Copper matrix composites as heat sink materials for water-cooled divertor target. Nuclear Materials and Energy, 5 (2015) 7–18.
[5] Zhou, J., Zhu, D., Tang, L., Jiang, X., Chen, S., Peng, X., Hu, C. Microstructure and prop-erties of powder metallurgy Cu-1%Cr-0.65%Zr alloy prepared by hot pressing, Vacuum, 131 (2016) 156–163.
[6] Purcek, G., Yanar, H., Saray, O., Karaman, I., Maier, H. J. Effect of precipitation on me-chanical and wear properties of ultrafine-grained Cu–Cr–Zr alloy. Wear, 311 (2014) 1-2, 149–158.
[7] Peng, L. J., Xie, H. F., Huang, G. J., Yang, Z., Mi, X. J., Xiong, B. Q. Dynamics of Phase Transformation in Cu-Cr-Zr Alloy, Advanced Materials Research, 887-888 (2014) 333–337.
[8] Wang, Z., Zhong, Y., Cao, G., Wang, C., Wang, J., Ren, W., Ren, Z. Influence of dc electric current on the hardness of thermally aged Cu–Cr–Zr alloy, Journal of Alloys and Com-pounds, 479 (2009) 1-2, 303–306
[9] Gierlotka, W., Zhang, K.-C., Chang, Y.-P. Thermodynamic description of the binary Cu–Zr system, Journal of Alloys and Compounds, 509 (2011) 33, 8313–8318.
[10] Qu, D., Zhou, Z., Yum, Y., Aktaa, J. Mechanical characterization and modeling of brazed tungsten and Cu–Cr–Zr alloy using stress relief interlayers, Journal of Nuclear Materials, 455 (2014) 1-3, 130–133.
[11] Qi, W., Tu, J., Liu, F., Yang, Y., Wang, N., Lu, H., Liu, M. Microstructure and tribologi-cal behavior of a peak aged Cu–Cr–Zr alloy, Materials Science and Engineering: A, 343 (2003) 1-2, 89–96.
[12] Han F., Jiang Y., Cao F., Han L., Zhu J., Wang W., Liang S., Enhanced strength, ductility and electrical conductivity of CuCrZr alloys by tailoring a heterogeneous layered micro-structure, Materials Science and Engineering: A, 863 (2023), 144502
[13] Kouhanjani, S. A., Zare-Bidaki, A., Abedini, M., Parvin, N. Influence of prior cold work-ing on the tribological behavior of Cu–0.65wt.%Cr alloy, Journal of Alloys and Compounds, 480 (2009) 2, 505–509
[14] Su, J., Dong, Q., Liu, P., Li, H., Kang, B., Research on aging precipitation in a Cu–Cr–Zr–Mg alloy, Materials Science and Engineering: A, 392 (2005) 1-2, 422–426.
[15] Batra, I. S., Dey, G. K., Kulkarni, U. D., Banerjee, S., Microstructure and properties of a Cu–Cr–Zr alloy, Journal of Nuclear Materials, 299 (2001) 2, 91–100.
[16] Batra, I. S., Dey, G. K., Kulkarni, U. D., Banerjee, S., Precipitation in a Cu–Cr–Zr alloy. Materials Science and Engineering: A, 356 (2003) 1-2, 32–36.
[17] Zhan, Y., Xu, Y., Yu, Z., Wang, Y., Xie, H., Shi, X., Cu–Cr–Zr alloy matrix composite pre-pared by powder metallurgy method, Powder Metallurgy, 49 (2006) 3, 253–257.
[18] Varol T., Güler O., Akçay S.B., Çolak H., The evolution of microstructure and properties of Cu-Cr alloys synthesized via flake powder metallurgy assisted by mechanical alloying and hot pressing, Materials Today Communications, 33 (2022), 104452.